	:The total momentum of a system remains
constant during a collision. (Momento	um lost by one object is gained by another)
	=
3 Types of Collision: 1. Explosion:	
2. Elastic Collision:	
3. Inelastic Collision:	
o. melastic comporti.	

Name ______ Hour _____

Name _.	Hour				
Cana	or action of Manageture Evansala.				
	ervation of Momentum Example: A 76 kg boater, initially at rest in a stationary 45 kg boat, steps out of the boat				
	and onto the dock. If the boater moves out of the boat with a velocity of				
	m/s to the right, what is the final velocity of the boat?				
	Type of collision:				
	Equation:				
2.	A 1500 kg car traveling at 15 m/s collides with a 4500 kg truck that is initially at				
	rest at a stoplight. The car and truck stick together and move together after the				
	collision. What is their final velocity?				
	Type of collision:				
	Equation:				
3.	A 4 kg bowling ball moving at 8.0 m/s has a head on collision with another				
	bowling ball (mass = 6 kg) initially at rest. The first ball stops after the collision.				
	Find the velocity of the second ball.				
	Type of collision:				
	Equation:				

Name	Hour
Conse	ervation of Momentum Problems:
1.	A skater with a mass of 100 kg glides at 2.5 m/s and collides with a stationary skater (mass=80 kg). If the two skaters hold onto each other, with what velocity will they move together after colliding? (1.39 m/s)
2.	A bullet with a mass of 25 grams is shot from a 5.6 kg gun with a velocity of 125 m/s. Calculate the velocity the gun would move backward with if it was not held in place. (0.558 m/s)
3.	Two superballs are thrown at each other and they hit and bounce off each other. The first ball has a mass of 35 grams and is moving with a speed of 11.2 m/s and it hits the second ball (mass=150 grams) moving at 13.5 m/s. If the second ball slows down to 9.2 m/s after the collision, what is the final velocity of the first ball? (29.6 m/s)
Other 4.	momentum problems: A pitcher claims he can throw a 0.156 kg baseball with as much momentum as a quarterback throws a football. If the quarterback throws the 0.43 kg football with a velocity of 40 mph, what speed in mph must the baseball be thrown at for his claim to be true? (110 mph)
5.	Rudolph (m=200 lbs) puts on a rocket pack to help him increase his velocity from 20 m/s to 35.5 m/s. If the force needed to accomplish this was 1200 N, how much time did it take? (1.17 sec)

Name	Hour	•

Bucket Day on Momentum

- 1. What is the letter for momentum?
- 2. What is the momentum of a school bus parked outside?
- 3. What is the equation for momentum?
- 4. What is the letter for impulse?
- 5. What is the equation for impulse?
- 6. What is the unit for impulse?
- 7. What unit do we typically use to measure force?
- 8. What is the unit for momentum?
- 9. When you catch a water balloon, what variable do you control as you cradle it?
- 10. What is a g force?
- 11. How do you find the number of g's?
- 12. What is the equation for when two objects explode apart?
- 13. If you have a mass of 50 kg and are traveling at 2 m/s, what is your momentum?
- 14. What two variables does momentum depend on?
- 15. What is the conservation of momentum?
- 16. What is an elastic collision?
- 17. What is an inelastic collision?
- 18. If you triple the velocity while keeping mass constant, what happens to the momentum?
- 19. If you double the mass while keeping velocity constant, what happens to the momentum?
- 20. If you divide momentum by mass, what unit do you end up with?
- 21. If you divide momentum by velocity, what variable do you end up with?
- 22. If you double the force to stop an object, but the momentum remains constant, what should happen to the time?
- 23. If you triple the time it takes to stop an object, but the momentum remains constant, what should happen to the force of the impace?