\qquad

Conservation of Momentum-
 Momentum of Collisions

:The total momentum of a system remains constant during a collision. (Momentum lost by one object is gained by a nother)
\qquad $=$ \qquad

3 Types of Collision:

1. Explosion: \qquad

2. Elastic Collision: \qquad
\square
3. Inelastic Collision: \qquad
\square
\qquad Hour \qquad

Conservation of Momentum Exa mple:

1. A 76 kg boater, initially at rest in a stationary 45 kg boat, steps out of the boat and onto the dock. If the boater moves out of the boat with a velocity of 2.5 m / s to the right, what is the final velocity of the boat?

Type of collision: \qquad
Equation: \qquad
2. A 1500 kg cartraveling at $15 \mathrm{~m} / \mathrm{s}$ collides with a 4500 kg truck that is initia lly at rest at a stoplight. The carand truck stick together and move together a fter the collision. What is their final velocity?

Type of collision: \qquad
Equation: \qquad
3. A 4 kg bowling ball moving at $8.0 \mathrm{~m} / \mathrm{s}$ has a head on collision with a nother bowling ball (mass $=6 \mathrm{~kg}$) initially at rest. The first ball stops after the collision. Find the velocity of the second ball.

Type of collision: \qquad
Equation: \qquad
\qquad Hour \qquad

Conservation of Momentum Problems:

1. A skater with a mass of 100 kg glides at $2.5 \mathrm{~m} / \mathrm{s}$ a nd collides with a stationa ry skater (mass=80 kg). If the two skaters hold onto each other, with what veloc ity will they move together after colliding? ($1.39 \mathrm{~m} / \mathrm{s}$)
2. A bullet with a mass of 25 grams is shot from a 5.6 kg gun with a velocity of $125 \mathrm{~m} / \mathrm{s}$. Calculate the velocity the gun would move backward with if it was not held in place. (0.558 m/s)
3. Two superballs a re thrown at each other and they hit and bounce off each other. The first ball has a mass of 35 grams and is moving with a speed of $11.2 \mathrm{~m} / \mathrm{s}$ and it hits the sec ond ball (mass=150 grams) moving at $13.5 \mathrm{~m} / \mathrm{s}$. If the sec ond ball slows down to 9.2 m / s a fter the collision, what is the final veloc ity of the first ball? $(29.6 \mathrm{~m} / \mathrm{s})$

Other momentum problems:
4. A pitcherclaimshe can throw a 0.156 kg baseball with as much momentum as a quarterback throws a football. If the quarterback throws the 0.43 kg football with a velocity of 40 mph, what speed in mph must the baseball be thrown at for his cla im to be true? (110 mph)
5. Rudolph ($\mathrm{m}=200 \mathrm{lbs}$) puts on a rocket pack to help him inc rease his velocity from $20 \mathrm{~m} / \mathrm{s}$ to $35.5 \mathrm{~m} / \mathrm{s}$. If the force needed to accomplish this was 1200 N , how much time did it take? (1.17 sec)
\qquad Hour \qquad

Bucket Day on Momentum

1. What is the letter for momentum?
2. What is the momentum of a school busparked outside?
3. What is the equation for momentum?
4. What is the letter for impulse?
5. What is the equation for impulse?
6. What is the unit for impulse?
7. What unit do we typic ally use to measure force?
8. What is the unit for momentum?
9. When you catch a water balloon, what variable do you control as you cradle it?
10. What is a g force?
11. How do you find the number of g 's?
12. What is the equation for when two objects explode apart?
13. If you have a mass of 50 kg and are traveling at $2 \mathrm{~m} / \mathrm{s}$, what is your momentum?
14. What two variables does momentum depend on?
15. What is the conservation of momentum?
16. What is an elastic collision?
17. What is an inelastic collision?
18. If you triple the velocity while keeping mass constant, what happens to the momentum?
19. If you double the mass while keeping velocity constant, what happens to the momentum?
20. If you divide momentum by mass, what unit do you end up with?
21. If you divide momentum by velocity, what variable do you end up with?
22. If you double the force to stop an object, but the momentum remains constant, what should happen to the time?
23. If you triple the time it takes to stop an object, but the momentum remains constant, what should happen to the force of the impace?
